

Yangzhou University 扬州大学

The Quorum Sensing Type I mediates pathogenic mechanism of Avian Pathogenic *E.coli*

Guoqiang Zhu (DVM,MSc,PhD) COLLEGE OF VETERINARY MEDICINE YANGZHOU UNIVERSITY

Email:yzgqzhu@yzu.edu.cn Tel:0514-87972590(Office) 13773564198(Cell Phone) Wechat:jonhzhu 2019.06.03

College of Veterinary Medicine

Ranking the third place by subject Veterinary Science in China in 2017-evaluation by the Ministry of Education, China

Veterinary Medicine: Seven-star specialty (top 2 position) according to Chinese alumni network

National Key Discipline: Preventive Veterinary Medicine

Academician of Chinese Academy of Engineering: 1 Professors: 44

College of Veterinary Medicine

Faculty and Staff

- Staff: 45
- Faculty Members : 100
- Academician of Chinese Academy of Engineering: 1
- Professors: 44
- Associate Professors: 35

Departments

Basic Veterinary Medicine
Clinical Veterinary Medicine
Preventive Veterinary Medicine

•Laboratory Animal Science

Enrolled Students

- Undergraduate students: 381
- Ms Students: 540
- PhD Students: 120

Lab PI Guoqiang Zhu

Guoqiang Zhu, Ph.D,

Professor and Chair of the Department of Preventive Veterinary Medicine

- Veterinary Microbiology and Microbial Disease
- Animal Pathogen Molecular Pathogenesis
- Interaction between Microorganisms and Host Cells, Particularly in

Bacterial Adhesins-related Field

• *E.coli* and Adhesin Vaccine

Research experience

1994-1998 China Academy of Military Medical Science, Ph.D
2001-2004 University of Pennsylvania, Post doc.
2006-2008 McGill University, Visiting Scholar
2009-2010 University of Maryland, Visiting Scholar
2011 South Dakota State University, Visiting Scholar
2016 Kansas State University, Visiting Scholar Drs

Drs.&Profs. David Francis and Weiping Zhang was visiting YZU in 2010

International collaboration

Philip R. Hardwidge, Professor College of Veterinary Medicine Kansas state University,2013

Visiting Study in SDSU, 2011

International collaboration

Dieter M. Schifferli, Ph.D, Professor University of Pennsylvania

Fernando Ruiz,Ph.D, assistant Professor University of Virginia, 2018

揚州大学 YANGZHOU UNIVERSITY

International collaboration

Examples of Funding for International collaboration

- "Yangzhou University-Kansas State University of the United States" joint training project for students majored in Veterinary Medicine (Innovative Talents International Cooperation Programme, **2015-2021**, PI, Guoqiang Zhu)
- Cooperation agreement on Co-establishment of Joint Laboratory of Diagnosis of Zoonotic Pathogens between (College of veterinary medicine) Kansas State University and Yangzhou University, **2016-2020**, PI, Guoqiang Zhu.
- Deep study of the interaction between bacteria and hosts (Bureau of National foreign experts, GDW20143200134, **2014-2019**, CoPI, Guoqiang Zhu)

iE

奖获得者,特颁发此证书。

为表彰2017年度扬州市科学技术

获奖者:菲利普·罗斯·哈德维基

Charles and the second second second second second

合作单位:扬州大学兽医学院

奖励类别:市科技合作贡献奖

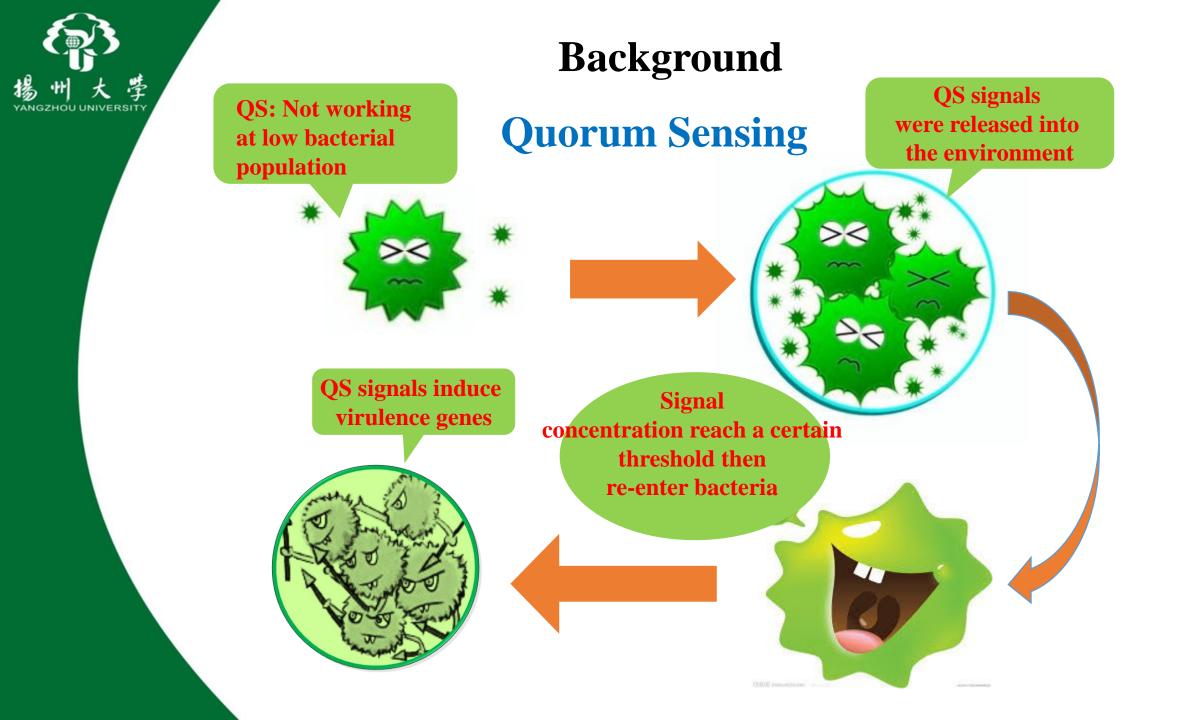
AN 18 MA

中国扬州大学-美国堪萨斯州立大学

动物传染病病原诊断联合实验室

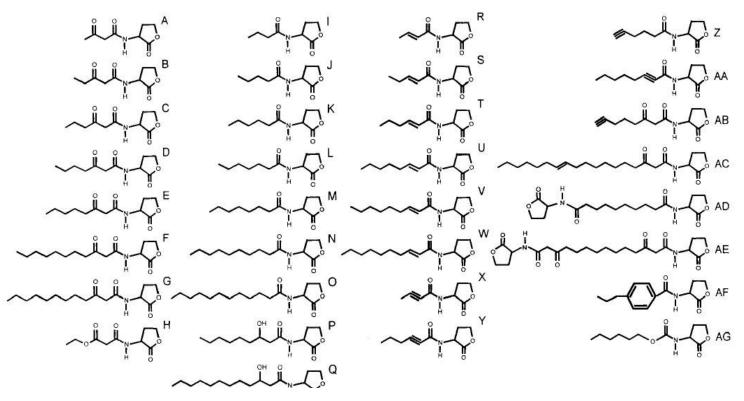
Joint Laboratory of Diagnosis of Zoonotic Pathogens Between Kansas State University and Yangzhou university

> Yangzhou,China March 20, 2018

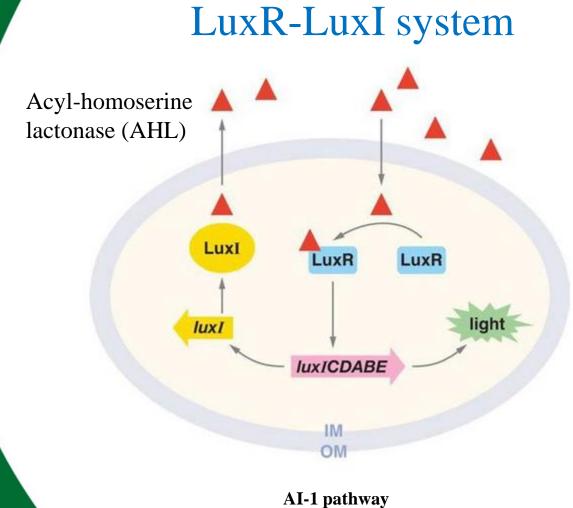

2018年度江苏省科学技术奖 证 书 为表彰江苏省科学技术奖获得者,特 颁发此证书。 奖励类型: 江苏省国际科学技术合作奖 获奖者: Philip Hardwidge 省长: 吴政隆 证书号: 2018-J-GH-D01

Scientific and Technical Friendship Award Jiangsu province

Scientific and Technical Friendship Award Yangzhou city



- Quorum Sensing (QS) is a specific way of communication between bacteria
- Bacteria produce signal molecules and release signals into the environment; when environmental signals reach a certain threshold concentration, QS systems take effects
- QS induce bacteria to exhibit new behavioral characteristics on a population scale, such as bioluminescence, secretion regulation of virulence factors, formation of spores, or formation of biofilm



AHL species in nature

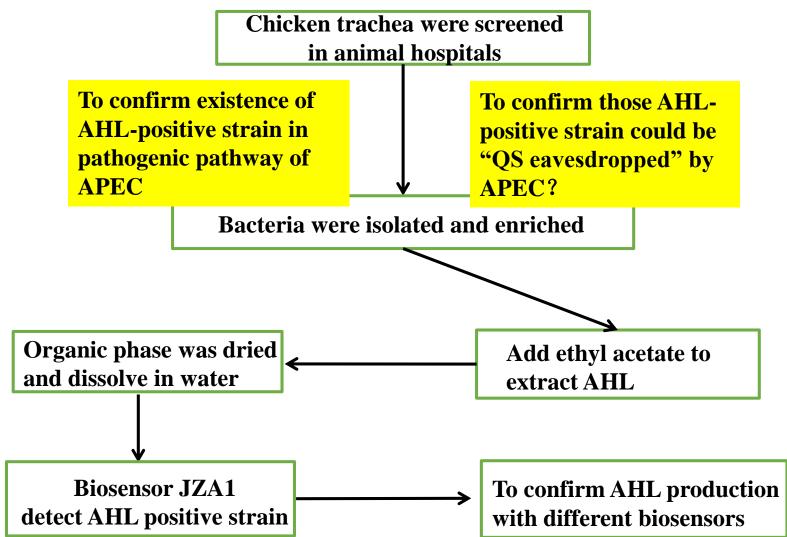
- Each bacteria species produces one or several kinds of signals in this natural AHL pool.
- Quorum eavesdropping happens when different bacteria could use AHLs.

1, *E. coli* is believed not to express the LuxI, which means *E.coli* can't produce AHLs, but only encodes a single LuxR homolog named SdiA

2, SdiA is expressed in insoluble inclusion bodies in the absence of AHLs, however, it is expressed in a folded, soluble form in the presence of AHLs.

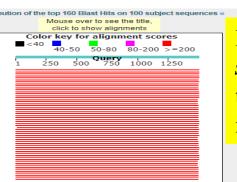
Avian Pathogenic *Escherichia coli* (APEC)

Avian colibacillosis is one of the most serious bacterial diseases caused by avian pathogenic *Escherichia coli* in poultry.


The virulence factors of APEC lead to the pathogenesis, and QS system is actively involved in the regulation process of virulence factors. However, QS-1 function of APEC have not been discussed.

Although QS-1 effect in ETEC or EHEC have been discussed,

- Is there any QS-1 signals that can affect APEC pathogenic pathway and virulence?
- Does the QS-1 system play a role in the APEC pathogenesis?

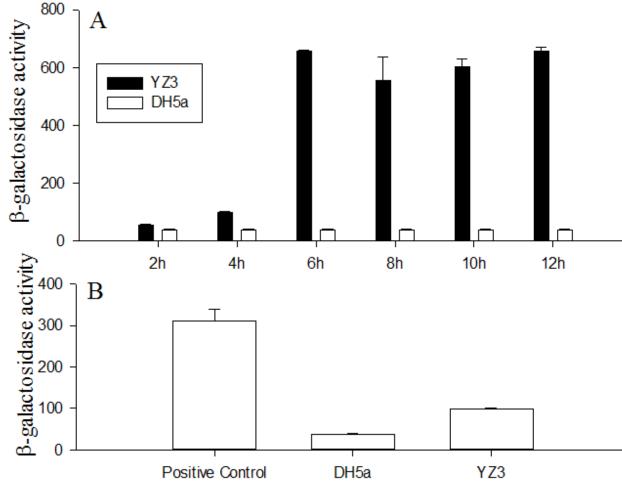

Isolation and Characterization of AHL positive strain

Isolation and Characterization of AHL positive strain

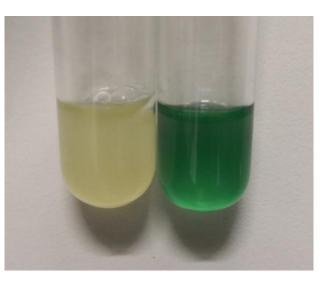
10 20 30 40 50 60 gtcttgacatccagagaatcctgcagagatgcgggagtgccttcgggaactctgagacag gtgctgcatggcgtcgtcgtcgtcgtcgtcgtgtgtggaaatgttgggttaagtcccgcaacgagc gcaacccttatcctttgttgccagcggttcggccgggaactcaaaggagactgccggtga taaaccggaggagggggggatgacgtcaagtcatcatggcccttacgaccagggctaca cacgtgctacaatggcgcatacaaagagaagcgacctcggagagcaagcggacctcata aagtgcgtcgtagtccggattggagtcgcaactcgggcctgaatcgctggaatcgctga taatcgtggatcagaatgccaggtgaatacgttcccgggccttgtacaaccgccgtc acaccatgggagtgggttgcaaaagaagtaggtagcttaaccttcgggagggggcgcttacc actttgtgatcatgactggggtgaagtcgtaacaaggtagctgaacctcgggaggggggcgcttacc actttgtgatcatgactggggtggaagtgggtgaagtcgtaacaaggtagcttaaccttcgggagggggcgcttacc actttgtgatcatgactggggtgaagtcgtaacaaggtagctaacaggtaaccgtagggaacc

First successful isolation of AHLpositive bacteria in chickens

Isolated *Enterobacter sakazakii* from more than 400 samples, named YZ3.

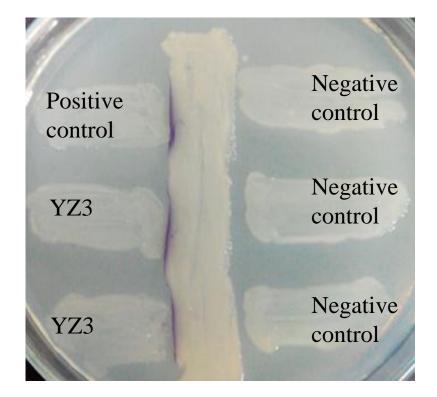

criptions

# Alignments #Download _ GenBank Graphics Distance free of results							
	Description	Max score	Total score	Query cover	E value	Ident	Accession
Cronobacter sakazakii strain ATCC 29544	16S ribosomal RNA gene, partial sequence	2758	2758	100%	0.0	100%	NR 044076
Cronobacter sakazakii strain CS-931 plasn	nid pCsaCS931a, complete sequence	2752	19268	100%	0.0	99%	CP027108.1
Cronobacter sakazakii strain CS-931 chron	nosome, complete genome	2752	19185	100%	0.0	99%	CP027107.1
Cronobacter sakazakii strain ATCC 29544,	complete genome	2752	19235	100%	0.0	99%	CP011047.1
Cronobacter sakazakii ATCC BAA-894, co	mplete genome	2747	19035	100%	0.0	99%	CP000783.1
Cronobacter sakazakii strain E269 16S ribe	psomal RNA gene, partial sequence	2747	2747	99%	0.0	100%	EF059819.1
Cronobacter sakazakii ES15, complete ger	<u>iome</u>	2741	19163	100%	0.0	99%	CP003312.1
Cronobacter sakazakii strain 05CHPL50 10	S ribosomal RNA gene, partial sequence	2739	2739	99%	0.0	99%	GU122202.
Cronobacter sakazakii strain CDC 4-85 16	S ribosomal RNA gene, partial sequence	2739	2739	99%	0.0	99%	GU122185.
Cronobacter sakazakii strain 05CHPL54 10	S ribosomal RNA gene, partial sequence	2734	2734	99%	0.0	99%	GU122206.
Cronobacter sakazakii strain 05CHPL29 16	S ribosomal RNA gene, partial sequence	2734	2734	99%	0.0	99%	GU122189.1



Isolation and Characterization of AHL positive strain

Biosensor JZA1 detection


JZA1, sensitive to all AHLs and stimulate galactosidase activity under AHL induction. Currently the most sensitive reporter for AHLs.

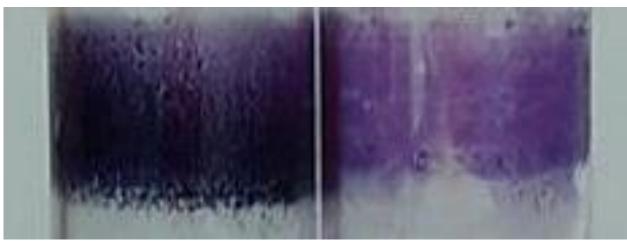
Isolation and Characterization of AHL positive strain

Biosensor CV026

CV026 produces purple pigment under short side-chain with high sensitivity

Isolation and Characterization of AHL positive strain

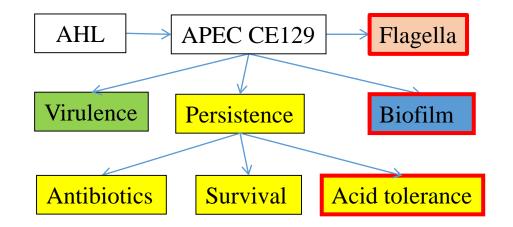
Biosensor PSB401/1142



pSB401/1142 strain emits a firefly-like bioluminescence under exogenous AHL. pSB401 for short side-chain AHL detection, pSB1142 for long side-chain AHL detection.

Isolation and Characterization of AHL positive strain

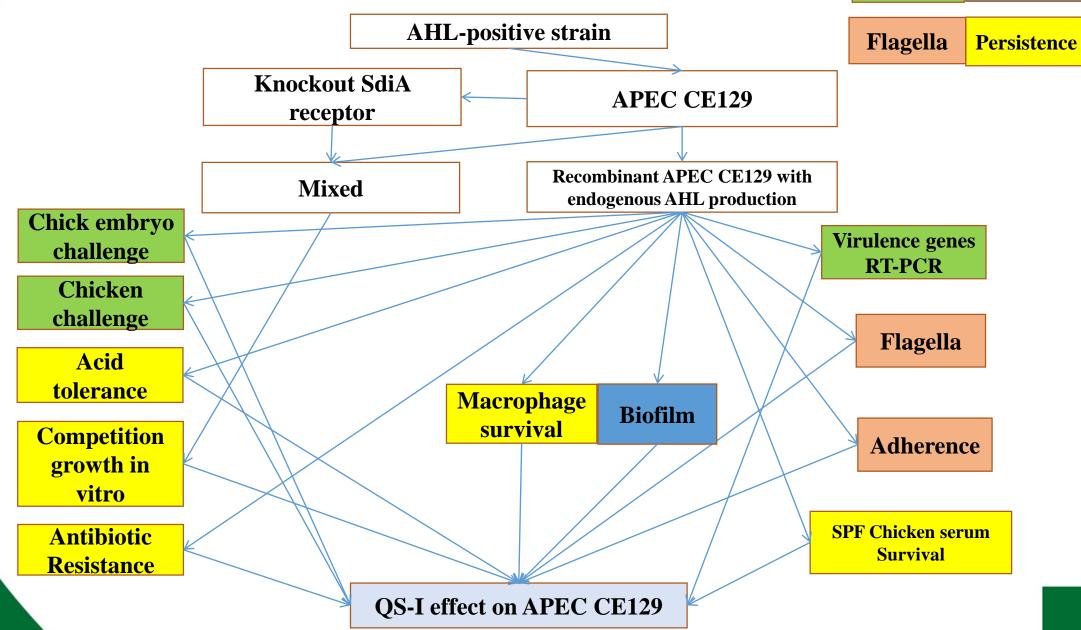
AHLs extracted from YZ3 reduce biofilm formation of APEC CE129


APEC CE129

APEC CE129+AHLs

This result showed that AHLs- produced YZ3 can be "QS eavesdropped" by APEC

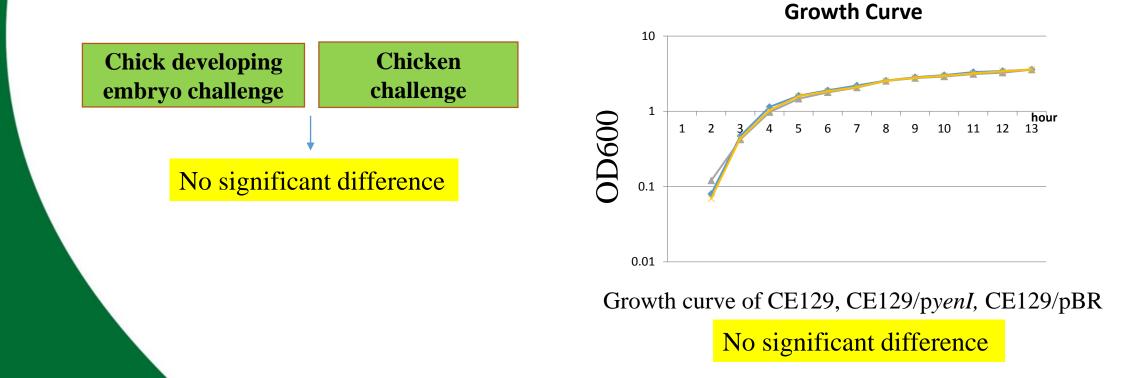
AHL regulation of APEC virulence


Focus Points: Virulence, Flagella, Biofilm, Persistence

AHL regulation of APEC virulence

Virulence

Biofilm



AHL regulation of APEC virulence

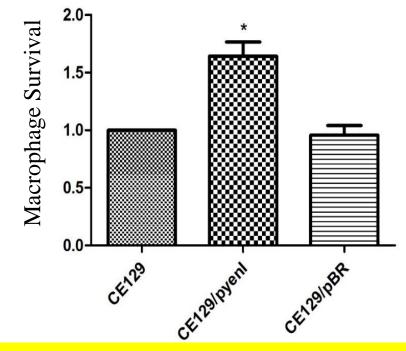
Constructs for CE129 \triangle sidA and CE129 pyenI.

CE129/ \triangle sidA, lacking AHL eavesdrop ability.

CE129 pyenI, producing endogenous AHL signals.

AHLs regulation of APEC virulence

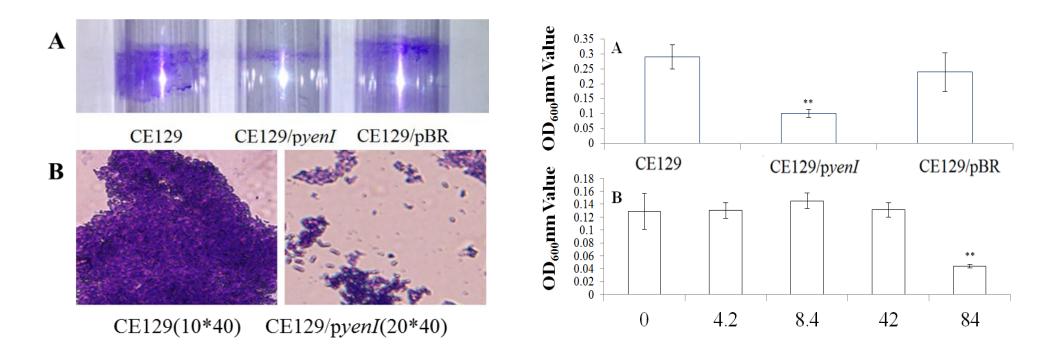
MIC Experimental data


	CHL	Tet	OFX	NOR
CE129	8µg/mL	R	16µg/mL	16µg/mL
CE129/pyenI	8µg/mL	R	16µg/mL	16µg/mL
CE129/pBR	8µg/mL	R	16µg/mL	16µg/mL

No significant difference

AHL regulation of APEC virulence

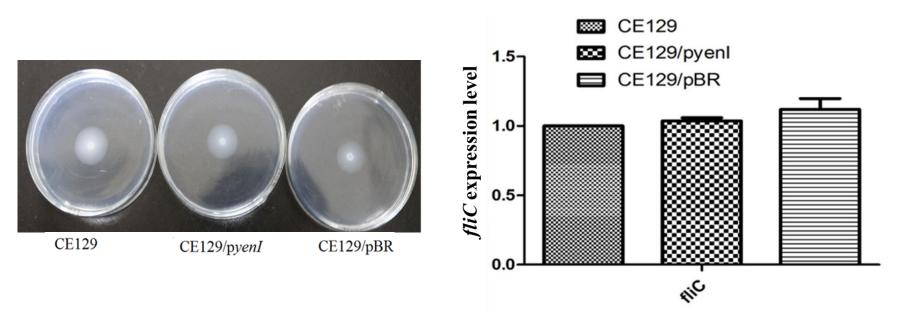
Experimental data for Macrophage HD11 Survival


Under AHL, intracellular survival ability of APEC increased

AHLs regulation of APEC virulence

Qualitative test of biofilm formation

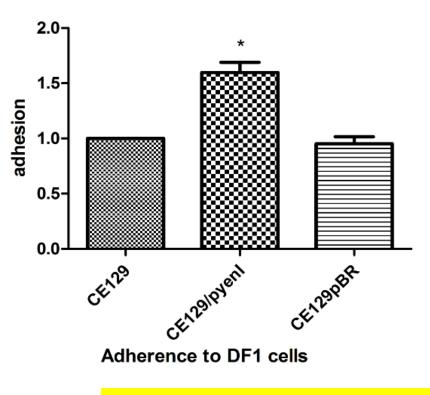
Quantitative test biofilm formation



Under AHLs, biofilm formation of APEC decreased

AHL regulation of APEC virulence

Mobility test



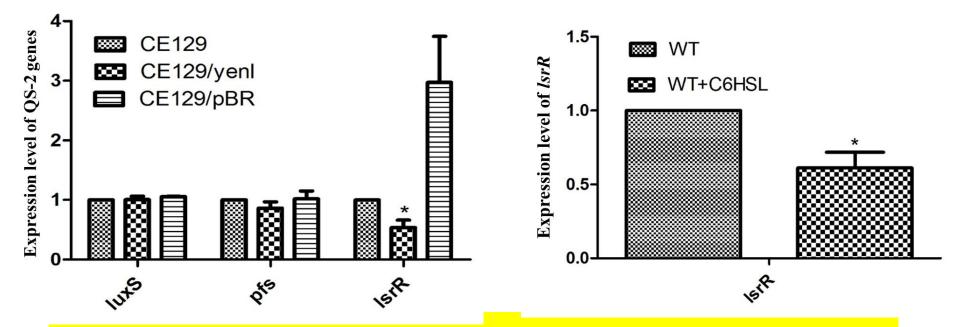
Expression level of flagella was not reduced under AHL induction This phenotype is different from intestinal pathogenic *E. coli*

AHL regulation of APEC virulence

Adherence test

Gene	CE129	CE129/	CE129/
	WT	pyenI	pBR
fimA	100	70	106
fliC	100	103	111

Real-Time PCR of *fimA* gene


AHLs **increase** APEC adherence to DF1 cell

Adherence changes not from type 1 fimbriae or flagella

AHL regulation of APEC virulence

QS-1 regulation of QS-2

QS-2 function of APEC has been fully discussed in previous study, QS-2 regulate flagella expression, pathogenicity and other characteristics in APEC. We found QS-1 **influenced** QS-2 through *lsrR* gene.

Summary

- Screening out AHL-positive bacteria *Enterobacter sakazakii* YZ3, and confirming its QS-1 signals can be QS- Eavesdropped by APEC strain.
- Constructs of APEC recombinant strains CE129△sidA and CE129 pyenI. CE129△sidA lacks AHL receptor and QS-eavesdrop ability. CE129 pyenI could produce endogenous AHL signals. On this basis, QS-1 function upon APEC virulence have been discussed in this study.
- QS-1 influence QS-II activity in APEC, as well as adherence and invasion ability. Biofilm formation of APEC was also suppressed under AHL signals. lsrR, the important gene in QS-II, decreased by 46.6%.
- Interestingly, APEC strain showed different phenotypes of acid tolerance and flagella expression, compared with Enterotoxigenic *E. coli*.

Acknowledgements

Collaborators

- Dr. Philip R. Hardwidge
- Dr. David H. Francis
- Dr. Weiping Zhang

Lab experiment members (Ph.D and Ms.)

- Yang Yang, Ph.D student
- Zhendong Li, Ms. student
- Yun Liu
- Binbin Zhang

Major Founding resource:

Kansas State University South Dakoda State University Illinois University

